Gas Leak on Converter 2nd Pass Outlet $P/P_A = 1.356$ Pess than 1.893 [(k + 1) / 2] * (k-1) therefore the flow is non-choked (i.e. subsonic), AND the following equation applies $Q = CAP\sqrt{(2g^2ZRT)(K/K-1)[(P_A/P)^{2/K} - (P_A/P)^{(K+1)/K}]}$

	, , , , ,		-		psia	psig	in WC
Q = mass gas flow (lbs/s)	in the last the state of many times are also and the section with		$K = C_p/C_v$ of the gas	1.4			
C = discharge coefficient	0,65		P = source pressure absolute (lb/ft²)	2871	19.9	5,2	145
Equivalent Diameter of hole (in)	0.77		P_A = ambient pressure absolute (lb/ft ²)	2117	14.7		
A = area of hole (ft²)	0,00323		M = molecualr weight of gas	34			
g _c = gravitational constant (ft/s)	32.17		Z = compressibility factor	1.077063			
R = gas constant (ft-lb/lb mol - °R)	1543,3		Release duration (seconds)	35,496			
T = temperature (°R)	1410	510 °C	SO ₃ concentration in gas (wt%)	22.4			
Molecular weight of SO₃	80		SO ₂ concentration in gas (wt%)	2.0			
			Molecular weight of SO ₂	64			

Intermediate Calculations:

0.000934

3,5

0.647034

0.593079

6.031606

Mass Calculations:

Q =

0.0801 lbs/s

Total mass:

2843 lbs

Total SO₃ mass:

318 lbs

Note: SO3 immediately reacts with H2o to for acid mist; RQ for acid mist = 1,000 lbs

Total SO₂ mass:

28 lbs

Reference: "Perry's Chemical Engineering Handbook, 6th Edition, McGraw-Hill 1984"

